Advanced Open Channel Hydraulics

Course Code	Credit Hours
CE-871	3+0

Course Description

To provide knowledge regarding fundamental principles of conservation of mass, momentum and energy & solution techniques governing geophysical flows over the surface of the earth

Textbook:

- 1. Richard H. French, Open Channel Hydraulics, McGraw Hill, 1985.
- 2. VenTe Chow, Open Channel Hydraulics, McGraw Hill, 1959.
- 3. M. H. Chaudhry, Open Channel Flow, Prentice-Hall, 1993.
- 4. Francis M. Henderson, Open Channel Flow, MacMillan, 1966.

Reference Book:

- John A. A. Roberson, John J. Cassidy & M. H. Chaudhry, Hydraulic Engineering (2nd Edition), Wiley Text Books, 1998.
- 2. J. Townson, Free-Surface Hydraulics, E & FN Spon, 1990.
- 3. Barbara A. Hauser, Practical Hydraulics Handbook, Lewis Publishers Inc., 1991.
- 4. Hung Tao Shen, Frontiers in Hydraulic Engineering, ASCE Press, 1983.

Prerequisites. Nil

ASSESSMENT SYSTEM FOR THEORY

Quizzes	10%
Assignments	10%
Mid Terms	30%
End Semester Exam	50%

<u>Teaching Plan</u>

Week No	Topics	Learning Outcomes
	Derivation of equations of	Learn about the governing
1-3	conservation of mass, energy and	partial differential equations
	momentum for the free surface flow.	(PDE) embodying
		Conservation laws.
4-6	Design of channels for uniform and non-uniform flow; design of vegetated channels.	Design different type of cost- effective channels
7-8	Theory, analysis & solution techniques	Compute flow profiles and
	for the gradually and spatially varied	interpret the results.
	flow	
9	Mid Semester Exam	
10-13	Empirical based techniques for	Be able to use manuals and
	solution of rapidly varied flow	charts for design of Hydraulic
		structures
14-16	Numerical schemes for the solution of	Understand the role of various
	1D and 2D Saint Venant equations.	parameters (CFL No.,
		Manning coefficient, Mesh
		density) as well as different
		algorithms pros & cons
17-18	End Semester Exam	